
Зачем нужны функции

Функции

1/3

Функция в программировании — это именованный фрагмент кода, предназначенный
для многократного использования.

Функции бывают:

• встроенные — написанные разработчиками Python или авторами модулей, например,
str(), print(), type();

Чтобы написать функцию нужно:

• придумать ей информативное имя;

• объявить её;

Функции пишут так, чтобы они обрабатывали входящие данные и возвращали значение,
результат работы.

Значения, передаваемые в функцию при вызове, называют аргументами функции.

Входящие данные функция принимает в параметры — переменные, обрабатываемые
в теле функции. Параметры указываются после имени функции в скобках, через запятую.

• описать тело функции — код, который будет выполняться при вызове.

Тело функции отбивается четырьмя пробелами от начала строки, в которой объявлена
эта функция.

• кастомные — те, что разработчик написал самостоятельно.

Параметры функции - а и b
def never_print_result(a, b):

def never_print_result(a, b):
 ...

Вызываем функцию с аргументами 5 и 4
never_print_result(5, 4)

def best_function_in_this_code(): # Объявление функции.
 print('Других функций тут нет!') # Тело функции.

best_function_in_this_code() # Вызов функции.
best_function_in_this_code() # Ещё один вызов функции.

В результате двух вызовов функции будет напечатано:
Других функций тут нет!
Других функций тут нет!

Работа с функциями

2/3

Переданные в функцию аргументы можно обрабатывать только в теле функции, получить
доступ к параметрам функции извне нельзя.

Функция обрабатывает входящие данные и получает какой-то результат. Этот результат
функция может вернуть — передать для дальнейшей обработки вне этой функции.

В теле функции возвращаемое значение указывается после ключевого слова return.
После выполнения инструкции return функция завершит выполнение.

Значения параметров по умолчанию

Применяются, если при вызове параметр не передан.

def print_recommendation(rating):
 if rating > 4.7:
 return 'Фильм крут'
 if rating > 3.5:
 return 'Смотреть можно'
 # Если не сработало ни одно условие -
 # функция вернёт это сообщение:
 return 'Так себе киношечка'

result = print_recommendation(4.1)

Функция не обязательно должна возвращать какие-то значения: она может выполнить
какую-то работу (например, вывести строку на печать) — и завершиться.

def super_print(movies):
 print('Подготовка к печати')
 print(movies)
 print('Готово!')

movies_names = ['Хакеры', 'Сеть', 'Трон', 'Матрица']
Вызов функции не нужно передавать в переменную:
функция ничего не вернёт, записывать в переменную нечего.
super_print(movies_names)

При указании значения по умолчанию
пробелы вокруг оператора в выражении b=1 не нужны. Так говорит PEP8.
def get_mod_diff(a, b=1):
 """Функция возвращает результат разницы полученных значений по модулю."""
 diff = abs(a - b)
 return diff

x = 3
y = 4
print(get_mod_diff(x))
Вывод в терминал: 2

3/3

Позиционные и именованные параметры

При вызове функции можно передавать аргументы, указывая имена параметров. Порядок
именованных аргументов при вызове не важен.

Пустая функция

Создаётся с помощью ключевого слова pass...

При указании значения по умолчанию
пробелы вокруг оператора в выражении b=1 не нужны. Так говорит PEP8.
def get_mod_diff(a, b=1):
 """Функция возвращает результат разницы полученных значений по модулю."""
 diff = abs(a - b)
 return diff

x = 3
y = 4
Именованные аргументы можно передавать в любом порядке.
print(get_mod_diff(b=y, a=x))

def empty():
 pass

…или многоточия Ellipsis:

def empty():
 ...

