
Словари

1/5

Словарь в Python (тип данных dict) — это неупорядоченная коллекция элементов; каждый
элемент словаря состоит из пары ключ:значение.

• Словари в Python записываются в фигурных скобках {}.

1� Литерально:

• В пределах словаря каждый ключ уникален.

• Между ключом и значением ставится двоеточие.

• Элементы словаря разделяются запятой.

С помощью словарей можно быстро находить данные по ключу, как в телефонной книге,
и структурировать и организовывать данные, чтобы быстро и эффективно получать
доступ к нужной информации по её метке (ключу). Например, можно использовать сло-
варь для хранения информации о студентах, где ключами могут быть их имена, а значени-
ями — их возрасты или оценки.

empty_dict = {}
print(empty_dict)
Вывод в терминал: {}
print(type(empty_dict))
Вывод в терминал: <class 'dict'>

movies = [('Матрица', 4.7), ('Трон', 3.8)]
movies_dict = dict(movies)
print(movies_dict)
Вывод в терминал: {'Матрица': 4.7, 'Трон': 3.8}

movies = dict.fromkeys(['Матрица', 'Хакеры', 'Трон', 'Кибер'], 4.8)
print(movies)
Вывод в терминал: {'Матрица': 4.8, 'Хакеры': 4.8, 'Трон': 4.8, 'Кибер': 4.8}

2� С помощью функции dict().

В качестве аргумента функции передаётся список кортежей, каждый из которых должен
состоять из двух элементов; эти кортежи будут преобразованы в элементы словаря.

3� С помощью метода dict.fromkeys().

Метод принимает в качестве обязательного аргумента последовательность элементов.
Значения элементов будут ключами словаря. �

Вторым, необязательным аргументом можно передать любой объект, который будет зна-
чением для всех ключей словаря. По умолчанию он равен None.

Синтаксис

Как объявить словарь

2/5

Обращение к элементам словаря

Возможно только по ключу:

movie_ratings = [4.7, 5.0, 4.3, 4.0]
movies = ['Матрица', 'Хакеры', 'Трон', 'Кибер']
movies_info = zip(movies, movie_ratings)

4� С помощью функции zip().

Это функция-упаковщик. Она принимает в качестве аргументов итерируемые объекты,
а возвращает объект типа zip — это коллекция кортежей. Каждый из кортежей содержит
элементы исходных коллекций с одинаковыми индексами. Напечатать zip-объект невоз-
можно: содержимое упаковано.

<имя_словаря> = {
 <ключ>:<значение> for <переменная_цикла> in <имя_исходной_последовательности>
}

movies = {
 'Трон': 3.8,
 'Кибер': 2.5,
 'Пятая власть': 4.1,
}

print(movies['Кибер'])
Вывод в терминал: 2.5

movies = {
 'Трон': {'rating': '3.8', 'review': 'Смотреть можно'},
 'Кибер': {'rating': '2.5', 'review': 'Так себе киношечка'},
}

movie = 'Трон'
if movie in movies:
 print('Информация об этом фильме доступна')
else:
 print('Информация о фильме отсутствует!')

Проверка наличия ключа в словаре

Выполняется через оператор in:

5� С помощью конструкции dict comprehensions.

Эта конструкция создаёт словарь на основе значений какой-то исходной последователь-
ности, пробегаясь по ней циклом, получая её элементы и создавая ключи и значения эле-
ментов словаря. Синтаксис конструкции:

Работа со словарями

3/5

Возврат значения по ключу: метод get()

Если запрошенный ключ не найден — вернётся None или значение, переданное вторым
аргументом.

movies = {
 'Трон': {'rating': 3.8, 'review': 'Смотреть можно'},
 'Кибер': {'rating': 2.5, 'review': 'Так себе киношечка'},
 'Пятая власть': {'rating': 4.1, 'review': 'Смотреть можно'},
}
Вызов метода get() с одним обязательным параметром.
print(movies.get('Хоббит'))
Вывод в терминал: None

Вызов метода get() с двумя аргументами.
Второй аргумент - значение, которое вернётся, если ключ в словаре не найден.
print(movies.get('Хатико', 'Такого фильма нет в словаре'))
Вывод в терминал: Такого фильма нет в словаре

print(movies.get('Трон'))
Вывод в терминал: {'rating': 3.8, 'review': 'Смотреть можно'}

Добавление нового элемента в словарь

Объединение словарей: метод update()

Новому ключу словаря присваивается значение:

movies = {
 'Матрица': 4.7,
 'Хакеры': 4.3,
 'Трон': 3.8,
}

movies['Сеть'] = 4.3
print(movies)
Вывод в терминал: {'Матрица': 4.7, 'Хакеры': 4.3, 'Трон': 3.8, 'Сеть': 4.3}

movies = {
 'Матрица': 4.7,
 'Хакеры': 4.3,
 'Трон': 3.8,
}

new_movies = {
 'Сеть': 4.1,
 '23': 4.3,
}

movies.update(new_movies)

Возврат значения удаляемого элемента: метод pop()

Принимает два аргумента pop(key, default):

Получение ключей и значений элементов словаря: методы keys() и values()

Метод keys() возвращает объект dict_keys — это последовательность, хранящая ключи
словаря.

Метод values() возвращает объект dict_values: это последовательность, элементами кото-
рой будут значения словаря.

Удаление элемента из словаря: оператор del

movies = {
 'Матрица': 4.7,
 'Хакеры': 5.0,
 'Трон': 3.8,
}

del movies['Трон']

movies = {
 'Трон': 3.8,
 'Кибер': 2.5,
 'Пятая власть': 4.1,
}
keys = movies.keys()
print(keys)
Вывод в терминал: dict_keys(['Трон', 'Кибер', 'Пятая власть'])
values = movies.values()
print(values)
Вывод в терминал: dict_values([3.8, 2.5, 4.1])

movies = {
 'Трон': 3.8,
 'Кибер': 2.5,
 'Пятая власть': 4.1,
}
movie_pop = movies.pop('Сеть', 'Фильм не найден')
print(movie_pop)
Вывод в терминал: Фильм не найден

movie_pop = movies.pop('Трон')
print(movie_pop)
Вывод в терминал: 3.8

4/5

• key — ключ элемента, который нужно удалить из словаря;

• необязательный аргумент default — значение, которое вернёт метод в случае, если пере-
данный ключ не найден в словаре.

Получение из словаря пары «ключ:значение»: метод items()

Преобразует словарь в объект dict_items — это коллекция кортежей, каждый из которых
первым элементом содержит ключ, а вторым — значение элемента словаря.

Перебор словаря: цикл for

movies = {
 'Трон': 3.8,
 'Кибер': 2.5,
}

for movie_name in movies:
 print(movie_name)

Трон
Кибер

Очистка и копирование словаря: метод clear()

movies = {
 'Трон': 3.8,
 'Кибер': 2.5,
}

movies.clear()

Копирование словаря: метод copy()

movies = {
 'Матрица': 4.7,
 'Хакеры': 4.3,
}
print(id(movies))
Вывод в терминал: 1781869204544

movies_copy = movies.copy()
print(id(movies_copy))
Вывод в терминал: 1781869204608

movies = {
 'Трон': 3.8,
 'Кибер': 2.5,
}

print(movies.items())
dict_items([('Трон', 3.8), ('Кибер', 2.5)])

5/5

