
Множества

1/5

1� Литерально:

Множество (от англ. set) — это изменяемая неупорядоченная коллекция неизменяемых
и уникальных объектов.

Программист на Python использует множества, чтобы решать задачи, связанные с удале-
нием повторяющихся элементов из коллекций, проверкой уникальности элементов и вы-
полнением операций пересечения, объединения или разности между коллекциями

movies = ['Матрица', 'Сеть', 'Хакеры', 'Трон', 'Тихушники', 'Сеть', 'Трон']
uniq_movies = set(movies)
print(uniq_movies)
Вывод в терминал: {'Сеть', 'Матрица', 'Тихушники', 'Хакеры', 'Трон'}

movie_ratings_set = {5.0, 4.1, 4.3, 4.7, 4.7, 3.8}
print(movie_ratings_set)
Вывод в консоль: {5.0, 4.3, 3.8, 4.1, 4.7}
print(type(movie_ratings_set))
Вывод в консоль: <class 'set'>

2� С помощью функции set:

movie_ratings = [5.0, 4.1, 4.3, 4.7, 4.7, 3.8]
Объявление множества через функцию set().
movie_ratings_set = set(movie_ratings)
print(movie_ratings_set)
Вывод в консоль: {5.0, 4.3, 3.8, 4.1, 4.7}
Элементов получилось меньше, чем в исходном списке:
неуникальные значения удалены.

print(type(movie_ratings_set))
Вывод в консоль: <class 'set'>

Как создать множество

Особенности множества

Создать пустое множество можно только через функцию set().

При добавлении неуникальных элементов они не будут включены в множество.

Элементами множества могут быть только неизменяемые объекты.

Все элементы множества уникальны

Элементы множества — хешируемый объект

2/5

Множество, созданное из словаря, будет содержать только ключи исходного словаря.

Из списка множество будет создано лишь в том случае, если элементы списка — неизме-
няемые объекты.

full_baggage = {'Диван', 'Чемодан', 'Саквояж', 'Картина', 'Корзина', 'Картонка'}

Если собачонки нет...
if 'Маленькая собачонка' not in full_baggage_list:
 # ...устраиваем скандал:
 print('— Товарищи! Где собачонка?')

maxim_toys = {'машинка', 'скакалка', 'кубики', 'пистолетик'}
print(id(maxim_toys))
Вывод в терминал: 33482552

maxim_toys.add('самолётик')
Проверим что элемент добавлен к исходному множеству.
print(id(maxim_toys))
Вывод в терминал: 33482552
print(maxim_toys)
Вывод в терминал:{'скакалка', 'машинка', 'самолетик', 'пистолетик', 'кубики'}

Попробуем добавить ещё кубики в множество.
maxim_toys.add('кубики')
print(maxim_toys)
Вывод в терминал:{'скакалка', 'машинка', 'самолетик', 'пистолетик', 'кубики'}

Один из элементов исходного списка - список (нехешируемый объект).
movie_ratings = [5.0, 4.1, [4.3, 4.7], 4.7, 3.8]
movie_ratings_set = set(movie_ratings)
print(movie_ratings_set)
Вывод в терминал: TypeError: unhashable type: 'list'

movie_info = {'Матрица': 4.5, 'Трон': 4.8}
movie_names = set(movie_info)
print(movie_names)
Вывод в терминал: {'Трон', 'Матрица'}

Работа с множествами

Чтобы определить, есть ли нужный элемент в множестве, применяют оператор in:

Принадлежность объекта множеству

Для добавления элемента в множество применяют метод add(). Если добавляемый эле-
мент уже есть во множестве — ничего не произойдёт, множество не изменится.

Добавление элемента

3/5

maxim_toys = {'машинка', 'скакалка', 'кубики', 'пистолетик'}
maxim_toys.clear()

maxim_toys = {'машинка', 'скакалка', 'кубики', 'пистолетик'}
lera_toys = {'скакалка', 'кукла', 'кубики', 'юла'}
overlap = maxim_toys & lera_toys
print(overlap)
Вывод в терминал: {'кубики', 'скакалка'}

Операции над множествами

Вернуть новое множество, в котором собраны элементы, одновременно присутствующие
в обоих исходных множествах, можно используя:

1� Оператор & (логическое И).

Пересечение

Для удаления элемента есть три метода: remove(), discard() и pop():

2� Метод pop() удаляет и возвращает случайный элемент множества.

1� Методы remove() и discard() очень схожи: они удаляют элемент из множества.
При попытке удалить несуществующий элемент методом remove() будет ошибка.

Удаление элемента множества

Для очистки существующего множества есть метод сlear():

Очистка множества

maxim_toys = {'машинка', 'скакалка', 'кубики', 'пистолетик'}

Удаление существующего элемента
maxim_toys.remove('кубики')
print(maxim_toys)
Вывод в терминал: {'машинка', 'скакалка', 'пистолетик'}

maxim_toys.discard('машинка')
print(maxim_toys)
Вывод в терминал: {'скакалка', 'пистолетик'}

Удаление несуществующих элемента
maxim_toys.discard('кукла')
print(maxim_toys)
Вывод в терминал: {'скакалка', 'пистолетик'}

maxim_toys.remove('кукла')
print(maxim_toys)
Вывод в терминал: KeyError: 'кукла'

4/5

maxim_toys = {'машинка', 'скакалка', 'кубики', 'пистолетик'}
lera_toys = {'скакалка', 'кукла', 'кубики', 'юла'}
overlap = maxim_toys.intersection(lera_toys)
print(overlap)
Вывод в терминал: {'кубики', 'скакалка'}

maxim_toys = {'машинка', 'скакалка', 'кубики', 'пистолетик'}
lera_toys = {'скакалка', 'кукла', 'кубики', 'юла'}
unite = maxim_toys | lera_toys
print(unite)
Вывод в терминал: {'кубики', 'кукла', 'скакалка', 'юла', 'машинка', 'пистолетик'}

2� Метод intersection().

Создать новое множество, содержащее все элементы исходных, можно используя:

1� Операнд | (логическое ИЛИ).

1� Оператор – (обычный минус).

maxim_toys = {'машинка', 'скакалка', 'кубики', 'пистолетик'}
lera_toys = {'скакалка', 'кукла', 'кубики', 'юла'}
unite = maxim_toys.union(lera_toys)
print(unite)
Вывод в терминал: {'кубики', 'кукла', 'скакалка', 'юла', 'машинка', 'пистолетик'}

maxim_toys = {'машинка', 'скакалка', 'кубики', 'пистолетик'}
lera_toys = {'скакалка', 'кукла', 'кубики', 'юла'}

diff = maxim_toys - lera_toys
print(diff)
Вывод в терминал: {'машинка', 'пистолетик'}

2� Метод difference().

maxim_toys = {'машинка', 'скакалка', 'кубики', 'пистолетик'}
lera_toys = {'скакалка', 'кукла', 'кубики', 'юла'}

diff = maxim_toys - lera_toys
print(diff)
Вывод в терминал: {'машинка', 'пистолетик'}

2� Метод union().

Объединение

Вернуть новое множество, в которое войдут элементы первого множества, не пересекаю-
щиеся с элементами второго, можно используя:

Разность

5/5

Полезные ресурсы
Раздел документации о множествах

maxim_toys = {'машинка', 'скакалка', 'кубики', 'пистолетик'}
lera_toys = {'скакалка', 'кукла', 'кубики', 'юла'}

sym_diff = maxim_toys ^ lera_toys
print(sym_diff)
Вывод в терминал: {'машинка', 'пистолетик', 'юла', 'кукла'}

Для поиска симметрической разности используют:

1� Символ «карет» ^.

maxim_toys = {'машинка', 'скакалка', 'кубики', 'пистолетик'}
lera_toys = {'скакалка', 'кукла', 'кубики', 'юла'}

Создаём множество, состоящее из элементов обоих множеств,
с исключением пересекающихся:
sym_diff = maxim_toys.symmetric_difference(lera_toys)
print(sym_diff)
Вывод в терминал: {'машинка', 'пистолетик', 'юла', 'кукла'}

2� Метод symmetric_difference().

Симметрической разностью двух множеств будет третье множество, каждый элемент
которого принадлежит либо первому, либо втором множеству, но не их пересечению.

Симметрическая разность

https://docs.python.org/3.7/library/stdtypes.html#set-types-set-frozenset

