
Числовые типы, None, арифметические операции

1/4

Знание базы работы с числовыми типами в Python — это фундамент для разработки прак-
тически всех программных приложений.

Целые числа

Числа с плавающей точкой

Как не потерять точность при вычислениях

Целые числа относятся к классу int (от англ. integer — целое число). Это все положитель-
ные, отрицательные числа без дробной части и ноль.

Числа с «плавающей точкой» относятся к типу float (от англ. float number — число с плава-
ющей точкой). Это все десятичные дроби; целая часть от дробной отделяется точкой.

Целые числа можно записывать, разделяя разряды знаком «_»: 432246123 — 432_246_123�

x = 231
z = -100
r = 432_246_123

b = 2.0
c = 0.07
Сокращённый синтаксис.
x = 2.
y = .07

input_data_1 = 3.3
input_data_2 = 4.18
Чтобы дробная часть всех слагаемых стала равна нулю —
каждое слагаемое умножаем на один и тот же множитель:
input_data = input_data_1*100 + input_data_2*100

После получения результата возвращаем всё как было:
input_data /= 100
print(input_data)

В терминал выведется:
7.48

Числовые типы
В Python выделяют разные типы чисел, они объединены в группу Numeric:

• целые числа — int (от англ. integer, «целое число»);

• комплексные числа — complex (от англ. complex number, «комплексное число»).

• числа с «плавающей запятой» (десятичные дроби) — float (от англ. float number, «число с
плавающей точкой»);

2/4

None не используется при объявлении переменной, которой не нужно присваивать
значение. В Python переменные не нужно объявлять без присваивания им значений.
Вместо этого, переменные создаются при присваивании им значений.

a = None
print(type(a))
Вывод в терминал: <class 'NoneType'>

Переопределим переменную:
a = 1
print(type(a))
Вывод в терминал: <class 'int'>

Выражение...
steps = steps + 1
...можно записать через комбинированный оператор присваивания:
steps += 1

Согласно правилам оформления кода PEP8 операторы отделяются пробелами.
Отсутствие пробелов не приведёт к ошибке, но правила лучше соблюдать.

x = 40 - 11
print(x)

Вывод в терминал: 29

Тип None используется, когда:

• нужно указать, что переменная или значение функции не определено или его вовсе нет;

Сложение и вычитание

• нужно задать значение по умолчанию для аргументов функции, которые не обязательно
должны быть переданы при вызове функции.

Инкрементирование — операция пошагового увеличения значения переменной на опре-
делённое число. Декрементирование — пошаговое уменьшение значения.

В Python инкрементирование можно записать через комбинированный оператор присва-
ивания:

Комбинированные операторы присваивания применимы для всех арифметических опе-
раций: -=� *=� /= и других.

None

Арифметические операции

3/4

x = 5 * 2
print(x)
Вывод в терминал: 10

Умножение

x = 5 ** 2
print(x)
Вывод в терминал: 25

Возведение в степень

x = 11 % 3
print(x)
Вывод в терминал: 2

Получение остатка от деления: оператор «модуло»

x = 20 / 2
print(x)
Вывод в терминал: 10.0

x = 11 / 3
print(x)
Вывод в терминал: 3.6666666666666665

Деление

Модуль Decimal

x = 22 // 2
print(x)
Вывод в терминал: 11, ничего неожиданного (делится ровно, остатка нет).

y = 22 // 3
print(y)
Вывод в терминал: 7
Это результат деления с остатком.
Возвращается только неполное частное.

z = 2 // 3
print(z)
Вывод в терминал: 0
Неполное частное - 0, остаток - 2, но он не возвращается.

Целочисленное деление

Модуль Decimal даёт почти стопроцентную точность при работе с дробями.

Для объявления таких переменных нужно:

• импортировать в код класс Decimal;

• передать в конструктор класса значение числа в кавычках — в виде строки:

Приоритеты при выполнении арифметических операторов в Python точно такие же,
как в математике:

1� Самый приоритетный арифметический оператор — возведение в степень.

3� Самые низкоприоритетные — операторы сложения и вычитания.

При равном уровне приоритетов операторы выполняются по очереди, слева направо:

Если рядом находится две операции возведения в степень, то последовательность
их выполнения будет обратной — справа налево:

Чтобы изменить приоритетность выполнения операций — применяют скобки. Операции в
скобках выполняются в первую очередь.

2� Следующими идут операторы умножения, деления, получения остатка и целочислен-
ное деление.

• при объявлении переменной указать этот класс;

Приоритеты арифметических операций

from decimal import Decimal

x = Decimal('3.3')
print(type(x))

Вывод в терминал: <class 'decimal.Decimal'>

print(1 + 2 * 3)
Вывод в терминал: 7
Но
print((1 + 2) * 3)
Вывод в терминал: 9

Полезные ресурсы
Статья в Википедии о комплексных числах

Комплексные числа в документации Python

4/4

https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BD%D0%BE%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE
https://docs.python.org/3/library/functions.html#complex

